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Abstract

The MAX test investigates three inheritance models while yielding one
p-value. The MAX-maxT test can be useful for producing p-values cor-
rected for multiple testing which take into account the correlation struc-
ture of the data. We encode both of these in a suite of SAS MACROs.
As well, we have studied the performance of the MAX-maxT test in the
presence of missing values and in the presence of population substructure.
Last, we compare the performance of the MAX-maxT algorithm to that
of SAS PROC CASECONTROL.

1 Introduction

In SNP-phenotype association studies (case-control), the MAX test [3], [12]
allows simultaneous investigation of three plausible inheritance models while
returning a single p-value. Although the maxT algorithm [10], [4] has been
publicly available for some time and a version of it has been used in the analysis
of a SNP-phenotype case-control study [9], we are unaware of any generally
available implementations of the MAX-maxT algorithm.

This document starts with some initial considerations involved in using the
maxT algorithm in the context of the MAX test applied to case-control data.
Section 3 shows the results of a series of simulations which investigate the per-
formance of the MAX-maxT algorithm in the presence of missing values and
population structure. Following that, Section 4 shows the results of comparing
our implementation of the MAX test to the tests in SAS PROC CASECON-
TROL and is followed by the discussion and conclusions.



2 Initial considerations

We begin by evaluating whether the maxT algorithm’s reliance on test statistics
for distinct hypotheses having the same or very similar distributions under the
null would invalidate its being applied in genetic tests as the three components
of the MAX test have different correlations for different SNPs. However, as is
evident from the Appendix of [12], under the null hypothesis these correlations
depend only on the minimum allele frequency (MAF). By doing a simulation
and producing several graphics such as Figures 1 and 2 below, we conclude that
the maxT seems to be robust to variation in MAFs.

A desirable property of procedures where many hypotheses are tested simulta-
neously is that the familywise error rate (the rate at which ANY Type I errors
are made for all hypotheses tested in an experiment, the FWER) be maintained
at the nominal level regardless of which subset of hypotheses are false. Westfall
and Young [10] state that this will be true when subset pivotality holds. We
show in the Appendix that subset pivotality at least holds in the ideal case of
no population structure or missing values.
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Figure 1: ECDFs of the MAX statistic for various MAFs. The distributions are
very comparable.
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Figure 2: Extreme upper tail regions of the ECDFs of the MAX statistic for
various MAFs. The distributions are very comparable.

3 Simulations investigating the performance of
the MAX-maxT algorithm under some depar-
tures from the ideal

In order for an analysis scheme to be practically useful, it must perform rea-
sonably well under suboptimal conditions. In this section, we perform three
simulations: one where some of the data are affected by missingness and two
where some of the data are affected by population structure. The two types of
population structure that we examine are cryptic relatedness (CR) and popu-
lation stratification (PS) [11], [13]. The next paragraphs describe the design of
these simulations.

In each simulation, we generate 1,050 data sets and permute the case-control
status vector at least 1,000 times. All data sets consist of 100 SNPs: three
SNPs which are in linkage disequilibrium (LD) with a phenotype-causing SNP,
47 SNPs that are independent, and 25 pairs of SNPs such that the members of a
pair are in LD. All data sets contain three SNPs that have (target) correlations
of 0.95, 0.65 and 0.2 with the phenotype-causing SNP. The mode of inheritance



in all simulations is additive, i.e. if fy, f1, and fo are the penetrances given
respectively zero, one and two copies of the phenotype-causing allele then f; =
(fo + f2)/2. We choose the MAF for each SNP or for the correlated pairs from
a distribution we create after carefully inspecting the table in the supporting
online material for [6] at the top of page S12. In generating the phenotype-
causing SNPs we follow the algorithm outlined in [13] in the top left corner of
p.190. The densities from which we sample relative risks (RRs), minor allele
frequencies (MAFs), and baseline penetrances (penetrance assuming that the
count of phenotype-causing allele is zero, fp) are shown in Figure 3. The
medians, 90th percentiles and theoretical maximums for fy, MAF and RR are
given in Table 1. The minimum and maximum MAFs are respectively 0.05 and
0.45 for the missingness and CR, studies.

Parameter Quantile
Median | 90th percentile | Maximum
f0 0.022 0.056 0.1
MAF 0.222 0.401 0.450
RR 2.322 3.558 6.000

Table 1: Median, 90th quantile and theoretical maximum for the generating
distributions for fy, MAF and RR.

In each simulation, we include some pairs of SNPs that have within-pair corre-
lation chosen uniformly on (0.15, 0.85) and common MAF p chosen as outlined
above. The way that we generate realizations of these correlated Bernoulli ran-
dom variables is as follows. Let I1; and I; represent two loci on a chromosome
of individual i. The entries in the vectors I; and I5 will have correlation F' when
the haplotype is chosen according to Table 2 [1], [11].

Haplotype (0,0) (0,1) (1,0) (1,1)

Probability [ (1 —p)*+ Fp(1—p) | pA—p)A1—F) [ p(0 —p)(1 = F) | p* + Fp(1 —p)

Table 2: Haplotypes and corresponding multinomial probabilities for generating
vectors of Bernoulli variables I1 and Iy where each entry has success probability
p and correlation between Iy; and I; is F.

3.1 Performance of the MAX-maxT algorithm in the pres-
ence of missing values

To investigate the performance of the MAX-maxT algorithm in the presence
of missing values we perform a simulation where there are one of four possible



Density from which prevalences given zero copies are chosen

o |
‘2\0’)
ko)
2 |
i
Do |
—
o+ T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
fO (prevalence given zero copies)
Density from which MAFs are chosen
-
2
2o
[
0o
o- T T T 1
0.1 0.2 0.3 0.4
MAF
Density from which relative risks are chosen
<~
2]
2o
821
Q|
° 1 2 ; 5 6

RR (f2/f0)

Figure 3: Densities from which baseline prevalences, minimum allele frequencies
(MAFSs) and relative risks are chosen for all simulations in Section 3.
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Figure 4: Pairs plot showing 500 realizations from the distribution from which
relative risks (RR=f2/fo), baseline prevalence (prevalence given zero copies of
phenotype-causing allele, fy), f1, fo and overall population prevalence (K) are
generated.



levels of missingness in each data set. At each level of missingness, we generate
a total of 1,050 data sets in ten groups of 105. Some data sets have no missing
values, others have 2%, 4% or 10% missing values. By “missing” we mean that
the state of both alleles is missing for a subject at that SNP. All data sets have
500 cases (R = 500) and 500 controls (S = 500) for a total of 1,000 subjects
(N =1000). Although, in looking at Figure 5, one suspects that the variance of
the FWER is greater for the 2% and 4% missing data sets than for the complete
data set, neither of these ratios differ significantly from unity.

One troubling aspect here is that the power seems to be independent of the
degree of correlation with the phenotype-causing SNP. This could be due to
several factors, one of which is our algorithm for generating correlated Bernoulli
variables. In the algorithm for the missingness and CR simulations, given the
MAF of the phenotype-causing SNP and a target F, we allow the new vector of
alleles to be an approximate solution. Prior to running our last simulation (to
investigate PS), Subsection 3.4, we rewrote our code for generating correlated
Bernoulli variables, forcing the MAF at the new locus to be exactly the same as
the MAF at the phenotype-causing SNP. We discuss details of the final algorithm
in Subsection 3.4.

A last comment here is that we perform 2,000 permutations for all complete
data sets and for 420 of the 1,050 data sets at each level of missingness. The
case-control vector of all other data sets is permuted 1,000 times.

3.2 Performance of the MAX-maxT algorithm in the pres-
ence of population structure

Two types of population structure that may affect case-control association stud-
ies are population stratification (PS) and cryptic relatedness (CR). In this sub-
section, we create subpopulations having allelic correlations or having different
MAFs then we allocate subpopulation members to cases or controls. We inves-
tigate the effect that this has on the FWER and the power.

3.3 Cryptic relatedness

Whittemore defines CR as occurring when a population is composed of at least
two subpopulations where all marker alleles of individuals in the same subpopu-
lation have correlation F, marker alleles of individuals in distinct subpopulations
are independent and all subpopulations have the same mean MAFs [11].

3.3.1 Simulation details

Our simulation breaks with the traditional model by allowing different degrees
of correlation within different subpopulations. We perform our simulation by
allocating half of our participants to a subpopulation having allelic correlations
equal to that exhibited by the inhabitants of the Saguenay/Lac St. Jean re-
gion of Quebec, 0.0055 [7], and the other half to a subpopulation having allelic
correlations equal to that exhibited by “a random sample of Caucasians drawn



Results from study of effect of missingness
Each point represents the mean of 105 data sets.

At least 1e3 permutations performed per data set.
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Figure 5: Familywise error rate (FWER) and power in the presence of missing
data. Note that the mean FWER stays close to the nominal value even at 10%
missing data. For each data set, R = .5 = 500.



from Europe”, 0.0006 [1]. For particular realizations of data sets, we follow the
algorithm outlined in [13] on the bottom left of p.190 (with the modification
previously mentioned). We draw 1,000 study participants for each data set,
evenly divided into cases and controls and into the subpopulations.

3.3.2 Results

As we see in Figure 6 below, the results with and without CR are quite compa-
rable. Although the asymptotic FWER seems to equal the nominal rate even in
the presence of CR, some small evidence exists that the variance of the FWER in
the presence of CR is greater than the variance in the absence of CR (parametric
F test p-value 0.054, bootstrap p-value 0.060).

3.4 Population stratification

In the PS model, subpopulations have different MAFs but all alleles are inde-
pendent.

3.4.1 Simulation details

We use the data from the HapMap project as packaged in the R package SNPas-
soc to investigate how the MAX-maxT algorithm performs in an instance of PS.
In this simulation, the sample size is 256 participants evenly divided between
cases and controls. For a number of our SNPs, we randomly allocate 1/2 of
our sample to be from the Yoruban subpopulation (YRI) and 1/2 to be from
the European (CEU) subpopulation. Thus, as in the CR study above, for each
simulated data set, the number in each subpopulation is the same as the num-
ber of cases and the number of controls. We draw bootstrap samples from the
SNPassoc data set HapMap to use as representative MAFs.

In this simulation we simplify our algorithm for producing SNPs that are corre-
lated with the phenotype-causing SNP. Assume that [; is a vector of indicators
such that I;; € {0,1} and that, given Zfil Iy;, we will generate I such that
Ef\il Igi = ZZVZI Ih‘. Note that Zz]il I1iIQi Z maX(2 * Zf\il Ili — N, 0) Given
the above, our observed measure of correlation, Fis an increasing function of
Zf\il IMIQZ' and

s N(max(23 7 0= N.0) =) 1)
F > " N
iz Ti) (N=22520 Tai)
Here is the algorithm that we use. Given I; and a target F', we first check that

F' is above the minimal value. If not, we replace F' by the minimal value. We
. N .
then calculate the required sum ) ;" , I1;I2; as the closest integer to
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As Table 3 shows, all margins and one entry being fixed, the rest of Table 3 is
now known.

I
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Table 3: 2x2 table for two correlated Bernoulli variables

Another difference between the PS simulation and the previous two is that the
MAF here varies on (0.1, 0.5) rather than on (0.05, 0.45).

The next subsection explains how we use the data in the R package SNPassoc [5]
to arrive at having 4,587 pairs of MAFs for the subsamples from which we draw
the bootstrap samples. The part of this report dealing with PS ends with a
subsection detailing our simulation results.

3.4.2 Excluding SNPs which would probably not pass HWE

In this subsection we explain how we exclude some of the SNPs from the
HapMap data set.

The HapMap data set contains information for 9,305 SNPs for 60 subjects in
each of two subpopulations, the Yoruban (YRI) and European ascertained in
Utah (CEU), but includes no genotyping information for 464 of the SNPs for the
YRI sample. We also exclude 3,977 SNPs for whom the average of the MAFs
for the two samples is less than 0.10. We anticipate that, were a population
sampled that consists of two subpopulations randomly assigned to cases and
controls, a screen might be performed using the controls to exclude SNPs which
appear to be out of HWE. We exclude 277 SNPs which we calculate as having
too high a probability of eventually being declared to not be in HWE. This
process is explained in the next paragraph.

For each SNP, we have p; and po, the MAFs in the YRI and CEU samples.
We assume that each data set will contain 128 members of each subpopulation.
The number of individuals from the YRI subpopulation allocated to the cases
is Binomial(128, 1/2). From this setting for each SNP, we select a matrix A
where each row of A is a realization of S = (s, s1, $2), the row representing
the controls in the ubiquitous 2x3 table of case-control status by genotype [8].
For each row s of A, we perform the exact test of HWE [2] which is known to
maintain a Type I error rate at or below the nominal level. Those members
of A having an exact p-value of less than 0.05 are assigned to our set B. We
also compute P(S = s | p1, p2, G1 = G2 = 128) using the fact that, conditional
on (1, the number of subpopulation 1 members in the controls, the probability



of a particular 2x3 table showing the genotype counts for the two subpopula-

tions within the controls is the product of two multinomial probabilities and thus
P(S =S | p1,p2,G1 = G2 = 128) =

ZCP(S =S | pl,pQ,Gl = G2 = 128,01 = C)P(Ol =C | pl,pQ,Gl = G2 = 128).

We assume that sets A and B are independent and estimate P(HWE will be
PnB)
P
probability of a realization s occurring in A is not independent of its belonging
to B. For example, in the coordinate plane, for (pi,p2) pairs close to y = z,
realizations with greater probabilities of occurring have smaller probabilities of
belonging to B. However, we argue that the assumption of independence should
be fairly accurate in the cases where accuracy matters most, for (p, p2) pairs
on the boundary between those pairs which would clearly lead to the hypothesis
of HWE being rejected for generated realizations and those pairs which would
clearly lead to the hypothesis of HWE being accepted. Figures 7 and 8 support

this discussion.

rejected | p1,p2, G1 = G2 = 128) as . Of course, given p; and po, the

3.4.3 Results for PS study

In Figure 9 we show some of the results of our study involving PS. It’s difficult
to discern from the graphs if the variance is bigger with or without PS so we
include Table 4 and note that the statistical evidence for the variance of the
FWER being greater in the presence of PS is quite weak (parametric F-test
p-value 0.15, bootstrap p-value 0.22). We note that, both in the absence and in
the presence of PS, the observed power is slightly greater for the SNPs that are
more highly correlated with the phenotype-causing SNP. Oddly, within levels
of correlation with the phenotype-causing SNP, the observed power is slightly
greater in the presence of PS. We attribute this to sampling variation.

Presence of PS? | FWER | Power, corr=0.95

Power, corr=0.65

Power, corr=0.20

No

0.0002

0.0024

0.0025

0.0016

Yes

0.0004

0.0027

0.0012

0.0014

Table 4: Variances for the FWER and for the power at different levels of corre-
lation with the disease SNP for the PS study.

4 Comparison of the MAX test with SAS PROC
CASECONTROL

In this section we compare the performance of the MAX test as implemented
in our MACROs to the programs already available in SAS PROC CASECON-
TROL. Three tests are available in SAS PROC CASECONTROL which are
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termed the allele, genetic and trend tests in the SAS documentation. We note
that the trend test is one of the components of the MAX test.

4.1 Power

In this subsection we show three different graphs corresponding to three different
data generating models: the recessive, additive and dominant models. For each
data generating model, we produce power curves for the three tests in SAS
PROC CASECONTROL as well as for the MAX test. The parameters MAF,
prevalence, sample size, and case-control ratio are the same for all points on a
particular graph.

For the purposes of this section, “additive” model just means that the relative
risk given one copy of the phenotype-causing allele (1) is between 1 and the
relative risk given two copies of the phenotype-causing allele (v2). We wanted
to smoothly pass through a specific point in parameter space from Table 2 of
[12]: the power is 0.8 when the model is additive, the total sample size is 179,
the case-control ratio is 1, the MAF is 0.2 and 7, and ~y, are respectively 2 and
3. Thus. we chose fj to take equally spaced values on the interval [0.055, 0.099],
let f1 = —1.569 % fy + 0.2548 and chose f5 so that the overall prevalence is 0.1.
Final parameters for the additive models are shown in Table 5.

We note that, for the recessive case, the MAX and the genotype tests seem to
do equally well in the example. For the additive case, the MAX test doesn’t
do quite as well as the trend test or the allele test. For the dominant model all
four tests seem to do equally well on the given example.

OR= Relative risks
P(Sick | 1 copy)/P(Well | 1 copy) P(Sick | 0 copies)
P(Sick | 0 copies)/P(Well | 0 copies) m ke
1 0.099 1 1.21
1.09 0.096 1.08 1.36
1.19 0.093 1.17 1.52
1.3 0.09 1.27 1.69
1.42 0.087 1.37 1.88
1.55 0.084 1.48 2.08
1.69 0.08 1.6 2.3
1.84 0.077 1.73 2.53
2.01 0.074 1.87 2.78
2.2 0.071 2.02 3.06
24 0.068 2.19 3.36
2.62 0.065 2.38 3.7
2.87 0.062 2.57 | 4.06
3.15 0.058 2.8 4.47
3.46 0.055 3.05 4.91

Table 5: Parameters of various additive models
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When comparing the MAX test to PROC CASECONTROL, arguments in terms
of power may not be sufficient for choosing one or the other. However, one needs
to remember that this discussion occurs in the context of the mode of inheritance
being unknown (otherwise one would just choose the component of the MAX
test which corresponds to the known mode of inheritance). The next section
shows the error rates and FWER at desired o = 0.05 for using the MAX test
vs. using the (highly questionable but apparently popular) strategy “just take
the smallest of the three p-values from PROC CASECONTROL.”

4.2 Type I Error Rates and Bonferroni-adjusted FWERs

This subsection shows the results after comparing the MAX test to the results
of PROC CASECONTROL and the strategy “just take the smallest of the
three p-values.” All the work in this subsection was done in R. For PROC
CASECONTROL and the questionable strategy, we see that the Type I error
rate is about 1.5 times greater than the desired rate and that the FWER is
about twice the desired rate. Thus, we predict that using the MAX test can
lead to savings which would otherwise be spent further investigating the excess
false positives.

5 Discussion and conclusions

We have presented some tests using our implementation of the MAX test and the
MAX-maxT algorithm. We have also shown some results implementing these
tests in particular cases of missing values and population structure. Although
we realize that the number of sample data sets (1,050) that we use in our
simulations is relatively small, we state that this sample size should be sufficient
for identifying any extreme problems. As well, we consider that we have used
rather extreme settings for our simulations (i.e., 10% missing data, MAFs drawn
from the CEU and YRI populations). We have seen that the results are quite
favorable towards using the software that we provide in the context of SNP-
phenotype association studies.

We have not looked at population structure in situations where the different sub-
populations have different prevalences except to the degree that this happens
inevitably in randomly assigning all study participants to cases and controls.
We note, however, that a simulation assigning specific prevalences to differ-
ent subpopulations could easily be implemented with minor alterations to the
existing R code which is available from the authors upon request.
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A Proof of subset pivotality for the MAX-maxT
algorithm under ideal conditions

We state that subset pivotality holds for a family of hypotheses resulting from
a case-control study of genetic association. Our argument follows the logic of
Example 2.1 of Westfall and Young (1993): we specify the distribution of two
of the test statistics arising from this situation, showing that this distribution
doesn’t depend on properties of the other test statistics.
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Let j and k be bi-allelic SNPs and M,,, be the allele of minimum frequency for
m € {j,k}. Letting f;, = Pr(case | i M,, alleles in the genotype) we can write
the hypotheses to be tested as

HOm:me:flm:me :K, me {jvk}

where K is the disease prevalence in the population. Assume that alleles on
distinct chromosomes are independent and alleles on the same chromosome have
correlation F'. The joint distribution of the counts Yj; and Yj; of minor alleles
at the two loci for individual i is specified. For example, the probability is
(p1p2 + F\/plpg(l —p1)(1 — p2))? that the pair of alleles at locus j is (1, 1)
while that at locus k is (1, 1). Define some random variables whose values
depend on the Y's

0, Y=
X(1/2)=4{ 1/2, Y
Y

1

0, Y<2
Y=2"

0, Y=0
1, Y>2

X(0)={ g : X(l):{

9

3

Let X;,,,(t) represent a generic coded count for indivual i at locus m. Note that
the joint distribution (X;;(¢), Xix(t')) is specified under the assumptions above
and in particular cov(X;;(t), X;x(t')) can be computed. We can write the numer-
ator of a component of the MAX test at locus m as Uy, (t) = SZfil X1im(t) —
RZfﬂ Xoim(t) where the first index on Xi;,,,(t) denotes case-control status.
Noting that, under Hom, Tin(t) = Un(t)/y/varg, (Um(t)) is asymptotically
distributed as N(0, 1), it remains only to specify cova,,um,, (T}(t), Tx(t')) in or-
der to have completely specified the joint distribution (7}(t), Tx(t')). Thus,
COVH,,;UHy, (TJ (t)v Ty (t’))

= EHOj UHog (TJ (t>7 Ty (t/))

= (varg, (U;(t)vary,, (U(t)) ™" *Eag,um,, (U; (1), Uk (t))

= (VarHDj (U;(t))vary,, (Uk (t"))~Y2RSNeov(X145(t), X1k (t')).
The distribution of the MAX test statistics at j and &, being a function only of
the statistics Ty, (t), is now completely specified.
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Results from study of effect of CR
Each point represents the mean of 105 data sets

2e3 permutations performed per data set.
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Figure 6: Performance of MAX-maxT algorithm in the presence of cryptic re-
latedness. Expectation of the FWER seems to be unaffected.
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Major AFs of 4864 SNPs selected from R package SNPassoc
Each subpop (CEU and YRI) has 60 subjects

Maj AFs for SNPs, European (CEUJ shmple
243 Maj AFs=1

15 Maj AEIS‘-:

1.0

o,
o e
X

0.8

. o
o 2%

Maj AF chgSen to be > 0.5 in YRI

cor=40.182

9,305 SKIPs in SNPassoc

-464,5NPs not genotyped in YRI

—-3977 SNPs have overall Maj AF>0.9
64 SNPs reported here

Major Allele differs in 1229 SNPs shown here
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.6

ajdwes (J4A) BANIOA ‘SANS 40} sV ey

0.0

Figure 7: Major Allele Frequencies in YRI sample vs those in the CEU sample
from the R package SNPassoc. Black dots are those (p1,p2) pairs for which
estimated P(HWE will be rejected | p1,p2, G1 = Go = 128) > 0.95.
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Major AFs of 4864 SNPs selected from R package SNPassoc
Each subpop (CEU and YRI) has 60 subjects

Maj AFs for SNPs, European (CEU]J sample
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Figure 8: Major Allele Frequencies in YRI sample vs those in the CEU sample

from the R package SNPassoc.

Red dots are those (p1,p2) pairs which lead

to realizations n for whom the p-value of the HWE exact test have negative
Spearman correlations with the probability of occurrence.
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Results from study of effect of PS

Each point represents the mean of 105 data sets.
2e3 permutations performed per data set.

FWER vs PS Power vs PS
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Figure 9: Performance of MAX-maxT algorithm in the presence of severe pop-
ulation stratification. Expectation of the FWER seems to be unaffected.
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Power curves for 4 tests, recessive model

Minimum allele freq=0.2, Prevalence=0.1, n=332

Case—control ratio 1:1, 100 SNPs at each OR
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Figure 10: Power of four analysis schemes in the case of a recessive trait.

Power curves for 4 tests, additive model

Minimum allele freq=0.2, Prevalence=0.1, n=179

Case—control ratio 1:1, 100 SNPs at each OR
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Figure 11: Power of four analysis schemes in the case of an additive trait.
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Power curves for 4 tests, dominant model

Minimum allele freq=0.2, Prevalence=0.1, n=216

Case—control ratio 1:1, 100 SNPs at each OR
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Figure 12: Power of four analysis schemes in the case of a dominant trait.

Observed Type 1 error rates vs MAF at alpha=0.05
for Proc CC and MAX test

at 3 levels of Wright's F
Each rate calculated using 10,000 replicates
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Figure 13: Type I error rates for the MAX test and for the “just use the smallest
of the 3 p-values” approach to applying SAS PROC CASECONTROL.
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Observed Type 1 error rates vs MAF at alpha=0.05
for Proc CC and MAX test

at 3 levels of Wright's F

Each rate calculated using 5 families of tests, each family of 2,000 SNPs.

R=S=1,000 => N=2,000. Bonferroni correction applied.
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Figure 14: Bonferroni-adjusted FWER for the MAX test and for the “just use
the smallest of the three p-values” approach to applying the tests in SAS PROC
CASECONTROL.
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